in a better location. Apply masking tape to the outside of the hull over the incorrect hole and fill it with epoxy.)

- 2. Using a 51 mm or 2" hole saw, cut the hole from outside the hull through the outer skin only (Figure 4).
- 3. From inside the hull, use a 60mm or 2-3/8" hole saw to cut through the inner skin and most of the core. The core material can be very soft. Apply only light pressure to the hole saw after cutting through the inner skin to avoid accidentally cutting the outer skin.
- 4. Remove the plug of core material so the *inside* of the outer skin and the inner core of the hull are fully exposed. Sand and clean the inner skin, core, and the outer skin around the hole.
- 5. If you are skilled with fiberglass, saturate a layer of fiberglass cloth with a suitable resin and lay it inside the hole to seal and strengthen the core. Add layers until the hole is the correct diameter. Alternatively, a hollow or solid cylinder of the correct diameter can be coated with wax and taped in place. Fill the gap between the cylinder and hull with casting epoxy. After the epoxy has set, remove the cylinder.
- 6. Sand and clean the area around the hole, inside and outside, to ensure that the marine sealant will adhere properly to the hull. If there is any petroleum residue inside the hull, remove it with either mild household detergent or a weak solvent (alcohol) before sanding.
- 7. Proceed with "Bedding" (see page 3).

Operation & Maintenance

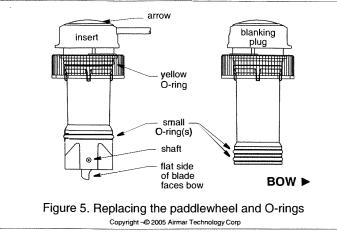
How the Valve Works

THE VALVE IS NOT A WATERTIGHT SEAL! The multisensor incorporates a self-closing valve which minimizes the flow of water into the boat when the insert is removed. The curved flap valve is activated by both a spring and water pressure. Water pushes the flap valve upward to block the opening, so there is no gush of water into the boat. Always install the insert or the blanking plug secured with the cap nut and safety wire for a watertight seal.

Using the Blanking Plug

To protect the paddlewheel, use the blanking plug:

- When the boat will be kept in salt water for more than a week.
- · When the boat will be removed from the water.
- When aquatic growth buildup on the paddlewheel is suspected due to inaccurate readings from the instrument.
- 1. The O-rings must be intact and well lubricated to make a watertight seal. On the blanking plug, inspect the O-rings (replace if necessary) and lubricate them with the silicone lubricant supplied or petroleum jelly (Vaseline®) (Figure 5).
- 2. Remove the insert from the housing by removing the safety wire and unscrewing the cap nut (Figure 3). This will lack up the insert. Remove the insert with a slow pulling motion. Replace it by sliding the blanking plug into the housing.
- **NOTE**: In the very unlikely event that the valve breaks, replace the housing the next time the boat is hauled.
- 3. With the blanking plug fully inserted, screw the cap nut several turns until the threads are engaged. Continue to tighten the cap nut completely. Hand tighten only. Do not over tighten.
- NOTE: The blanking plug must be fully inserted in the housing and the cap nut screwed on completely for a watertight seal.
- 4. Reattach the safety wire to prevent the blanking plug from backing out in the unlikely event that the cap nut fails or is screwed on incorrectly.


Winterizing

After the boat has been hauled for winter storage, remove the blanking plug to let the water drain away before reinserting it. This will prevent any water from freezing around the blanking plug and possibly cracking it.

Servicing the Insert

Aquatic growth can accumulate rapidly on the depth transducer's face and impede or freeze the paddlewheel's rotation reducing performance within

weeks. Clean the insert with a Scotch-Brite® scour pad and mild household detergent, being careful to avoid scratching the depth transducer. If fouling is severe, remove the paddlewheel (see step #1 below). Lightly wet sand it with fine grade wet/dry paper.

The water lubricated paddlewheel bearings have a life of up to 5 years on low-speed boats [less than 10kn (11 MPH)] and 1 year on high-speed vessels. Paddlewheels can fracture and shafts can bend due to impact with water borne objects and mishandling in boat yards. O-rings must be free of abrasions and cuts to ensure a watertight seal. Order a replacement Paddlewheel Kit No. 33-540-01.

- 1. To remove the old paddlewheel shaft, grasp the end with small diagonal wire cutters and pull (Figure 5).
- 2. Place the new paddlewheel in the cavity with the flat side of the blade facing the same direction as the arrow on the top of the insert.
- 3. Tap the new shaft into place until the end is flush with the outside wall of the insert.
- 4. Install the yellow O-ring near the top of the insert. Install a small O-ring near the paddlewheel.
- 5. Place the remaining two small O-rings near the bottom of the blanking plug

Replacement Sensor & Parts

The information needed to order a replacement Airmar multisensor is printed on the cable tag. Do not remove this tag. When ordering, specify the part number, date, and frequency in kHz. For convenient reference, record this information on the top of page one.

Lost, broken, or worn parts should be replaced immediately. If you have purchased a plastic housing and have a wood hull or desire greater strength, purchase an Airmar metal housing.

Blanking Plug	Hull Nut or Isolation Bushing	Paddlewheel Shaft O-rings	Housing, Hull Nut & Washer
33-486-01	04-004 (plastic) 02-530-02 (stainless steel) 04-186-1 (isolation bushing)	33-398-04	Valve: 33-510-01 (plastic, P617V) 33-588-01 (bronze, B617V) 33-617-01 (stainless steel, SS617V) NO Valve: 33-100 bronze, low-profile, B17 33-224-01 bronze, flush, B21

Obtain parts from your instrument manufacturer or marine dealer.

USA	
Tel:	803-693-0777
email:	sales@gemeco.com

Airmar EMEA

Gemeco

Europe, Middle East, Africa Tel: +33.(0)2.23.52.06.48 email: sales@airmar-emea.com

35 Meadowbrook Drive, Milford, New Hampshire 03055-4613, USA

www.airmar.com

Thru-Hull, Retractable with Valve Smart[™] TRIDUCER[®] Multisensor Model DST800V

U.S. Patents: 6,904,798; 7,110,908; 7,352,171. UK Patents: 2 407 874; 2 409 527

Follow the precautions below for optimal product performance and to reduce the risk of property damage, personal injury, and/or death.

WARNING: Always wear safety glasses, a dust mask, and ear protection when installing.

WARNING: The YELLOW O-ring must be in place near the top of the insert to make a watertight seal.

WARNING: To retrofit the insert in a housing without a valve, the insert must have a BLACK O-ring near the top to make a watertight seal.

WARNING: The O-rings must be intact and well lubricated to make a watertight seal.

WARNING: The valve is not a watertight seal!

Always install the ultrasonic insert or blanking plug. Be sure it is fully inserted into the housing and the cap nut is screwed on completely for a watertight seal.

WARNING: Always attach the safety wire to prevent the insert or blanking plug from backing out in the unlikely event that the cap nut fails or is screwed on incorrectly.

WARNING: Immediately check for leaks when the boat is placed in the water. Do not leave the boat unchecked for more than three hours. Even a small leak may allow considerable water to accumulate.

WARNING: Stainless steel housing in a metal hull-Be sure the washer contacts the hull. Do not tighten the hull nut with the washer against the isolation

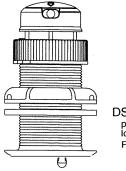
bushing, as the housing will not be firmly installed. CAUTION: Plastic housing—Never use a fairing with a plastic housing: the protruding sensor would be

vulnerable to damage from impact.

CAUTION: Metal housing-Never install a metal housing in a vessel with a positive ground system.

CAUTION: Never pull, carry, or hold the transducer by its cable; this may sever internal connections.

CAUTION: The arrow on the top of the insert must point forward toward the bow.


CAUTION: Stainless steel housing in a metal hull-Stainless steel housing must be isolated from a metal hull to prevent electrolytic corrosion. Use the isolation bushing supplied.

CAUTION: Never use solvents. Cleaner, fuel, sealant, paint, and other products may contain solvents that can damage plastic parts, especially the transducer's face.

IMPORTANT: Read the instructions completely before proceeding with the installation. These instructions supersede any other instructions in your instrument manual if they differ.

OWNER'S GUIDE & INSTALLATION INSTRUCTIONS

Record the information found on the cable tag for future reference _Date __Frequency____kHz Part No.___

DST800V plastic low profile P617V housing

Applications

- · Accommodates up to a 20° deadrise angle.
- Plastic housing recommended for fiberglass or metal hull only. Never install a plastic housing in a wood hull, since swelling of the wood can possibly fracture the plastic.
- · Bronze housing recommended for fiberglass or wood hull. Never mount a bronze housing in an aluminum hull because electrolytic corrosion will occur.
- Stainless steel housing compatible with all hull materials. Recommended for aluminum hulls to prevent electrolytic corrosior provided the stainless steel housing is isolated from the metal hul

Pretest

Connect the multisensor to the instrument and spin the paddlewheel Check for a speed reading and the approximate air temperature. If there are no readings or they are inaccurate, check all the connections and repeat the test. If there are still no readings or they are inaccurate, return the product to the place of purchase.

Tools & Materials

Safety glasses Dust mask Ear protection Water-based anti-fouling paint (mandatory in salt water) Electric drill with 10mm (3/8") or larger chuck capacity Drill bit: 3mm or 1/8" Hole saw: 51 mm or 2" (plastic or metal housing in non-metal hul 57 mm or 2-1/4" (stainless steel housing in metal hull) Sandpaper Mild household detergent or weak solvent (such as alcohol) File (installation in a metal hull) Marine sealant (suitable for below waterline) Slip-joint pliers (installing a metal housing) Grommet(s) (some installations) Cable ties Installation in a cored fiberglass hull (see page 3): Hole saw for hull interior: 60mm or 2-3/8" Fiberglass cloth and resin or Cylinder, wax, tape, and casting epoxy

Anti-fouling Paint

Surfaces exposed to salt water must be coated with antifouling paint. Use water-based anti-fouling paint only. Never use ketone-based paint, since ketones can attack many plastics possibly damaging the multisensor.

It is easier to apply anti-fouling paint before installation, but allow sufficient drying time. Reapply paint every 6 months or at the beginning of each boating season. Paint the following surfaces (Figure 1):

- · Outside wall of the insert below the lower O-ring
- Paddlewheel cavity
- · Paddlewheel
- Exposed end of the insert
- · Exterior flange of the housing Bore of the housing up 30mm (1-1/4")
- Blanking plug below the lower O-ring including the exposed end

m

bore of housing up 30mm (1-1/4")

Figure 1. Anti-fouling paint

Convright @ 2006 Airmar Technology Corr

insert

outside wall

below lower

paddlewheel

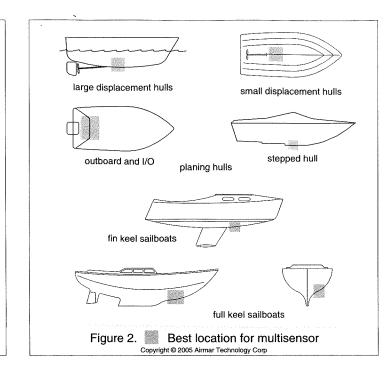
paddlewheel

exposed end

exterior flange

of housing

O-ring

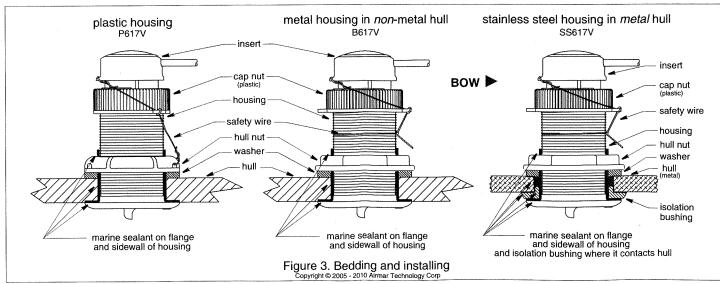

cavity

housing

Mounting Location

CAUTION: Do not mount in line with or near water intake or discharge openings, or behind strakes, fittings, or hull irregularities that will disturb the water flow.

- · The water flowing under the hull must be smooth with a minimum of bubbles and turbulence (especially at high speeds).
- · The multisensor must be continuously immersed in water.
- The transducer beam must be unobstructed by the keel or propeller shaft(s).
- · Choose a location away from interference caused by power and radiation sources such as: the propeller(s) and shaft(s), other machinery, other echosounders, and other cables. The lower the noise level, the higher the echosounder gain setting that can be used.
- · Choose a location with a minimum deadrise angle, so the transducer beam will be aimed at the bottom.
- · Choose an accessible spot inside the vessel with adequate space for the height of the housing, tightening the nuts, and installing the insert. Allow a minimum of 280mm (11").



Boat Types (Figure 2)

- · Displacement hull powerboats-Locate amidships near the centerline. The starboard side of the hull where the propeller blades are moving downward is preferred.
- · Planing hull powerboats-Mount well aft, on or near the centerline, and well inboard of the first set of lifting strakes to insure that the multisensor will be in contact with the water at high speeds. The starboard side of the hull where the propeller blades are moving downward is preferred.

Outboard and I/O-Mount just forward of the engine(s). Inboard-Mount well ahead of the propeller(s) and shaft(s). Stepped hull-Mount just ahead of the first step. Boat capable of speeds above 25kn (29MPH)-Review the installation location and operating results of similar boats before proceeding.

- · Fin keel sailboats-Mount on or near the centerline and forward of the fin keel 300-600mm (1-2').
- Full keel sailboats-Locate amidships and away from the keel at the point of minimum deadrise.

Installation

Hole Drilling

Cored fiberglass hull—Follow separate instructions on page 3.

- 1. Drill a 3mm or 1/8" pilot hole from inside the hull. If there is a rib, strut or other hull irregularity near the selected mounting location, drill from the outside.
- Metal housing-Wrap one end of the safety wire tightly arounc the housing and twist it together with the long end. Keeping the 2. Using the appropriate size hole saw, cut a hole perpendicular to wire taut throughout, lead the wire straight up and through one the hull from outside the hull. eye in the cap nut. Thread the wire through the eye a second time. Then lead the wire counterclockwise and through the eye ensure that the sealant will adhere properly to the hull. If there is in the insert. Twist the wire securely to itself.
- 3. Sand and clean the area around the hole, inside and outside, to any petroleum residue inside the hull, remove it with either mild household detergent or a weak solvent (alcohol) before sanding. Metal hull-Remove all burrs with a file and sandpaper.

Bedding

CAUTION: Be sure the surfaces to be bedded are clean and dry.

Apply a 2mm (1/16") thick layer of marine sealant around the

CAUTION: If your multisensor came with a connector, do not flange of the housing that contacts the hull and up the sidewall of remove it to ease cable routing. If the cable must be cut and the housing (Figure 3). The sealant must extend 6mm (1/4") spliced, use Airmar's splash-proof Junction Box No. 33-035 and higher than the combined thickness of the hull, the washer, and follow the instructions provided. Removing the waterproof the hull nut. This will ensure there is sealant in the threads to seal connector or cutting the cable, except when using a watertight junction box, will void the multisensor's warranty. the hull and to hold the hull nut securely in place.

Stainless steel housing in a metal hull—A stainless steel housing must be isolated from a metal hull to prevent electrolytic corrosion. Slide the isolation bushing onto the housing. Apply additional sealant to the surfaces of the bushing that will contact the hull, filling any cavities in and around the bushing.

Installing

NOTE: Disregard any arrow on the housing; it is not used.

- 1. From outside the hull, push the housing into the mounting hole using a twisting motion to squeeze out excess sealant (Figure 3).
- 2. From inside the hull, slide the washer onto the housing. Stainless steel housing in a metal hull-Be sure the washer contacts the hull. Do not tighten the hull nut with the washer against the isolation bushing, as the housing will not be firmly installed. If necessary, sand the isolation bushing until the washer rests against the hull.
- 3. Screw the hull nut in place. Plastic hull nut-Hand tighten only. Do not over tighten. Metal hull nut-Tighten with slip-joint pliers. Cored fiberglass hull-Do not over tighten, crushing the hull. Wood hull—Allow wood to swell before tightening the hull nut.
- 4. Remove any excess marine sealant on the outside of the hull to ensure smooth water flow under the multisensor.
- 5. The O-rings must be intact and well lubricated to make a watertight seal. After the marine sealant cures, inspect the Orings, including the YELLOW O-ring, on the insert (replace if necessary) and lubricate them with the silicone lubricant supplied. Also lubricate the bore of the housing above the valve.
- 6. The insert must be fully inserted into the housing and the cap nut screwed on completely to make a watertight seal. Slide the insert into the housing with the arrow on the top pointing forward toward the bow. Screw the cap nut several turns until the threads are engaged. Being sure the arrow on the top of the insert and the cable exit are pointing forward toward the bow, continue to tighten the cap nut completely. Be careful not to rotate the housing and disturb the sealant. Hand tighten only. Do not over tighten.
- 7. Always attach the safety wire to prevent the insert from backing out in the unlikely event that the cap nut fails or is screwed on incorrectly.

Plastic housing—Attach the safety wire to one eye in the hull nut. Keeping the wire taut throughout, lead the wire in a counterclockwise direction and thread it through one eye in the cap nut. Thread the wire through the eye a second time. Then lead the wire through the eye in the insert. Twist the wire securely to itself.

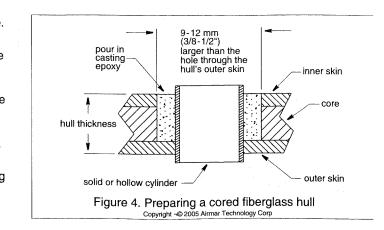
Installing in Housing WITHOUT Valve

To create a watertight seal in a housing that does NOT have a valve, the insert must have a BLACK O-ring near the top. Use Replacement O-ring Kit 20-519-01 and follow the instructions supplied.

Cable Routing & Connecting

- 1. Route the cable to the instrument being careful not to tear the cable jacket when passing it through the bulkhead(s) and other parts of the boat. Use grommets to prevent chafing. To reduce electrical interference, separate the multisensor cable from other electrical wiring and the engine. Coil any excess cable and secure it in place with cable ties to prevent damage.
- 2. Refer to the instrument owner's manual to connect the multisensor to the instrument.

Checking for Leaks


When the boat is placed in the water, **immediately** check around the multisensor for leaks. Note that very small leaks may not be readily observed. Do not to leave the boat in the water for more than 3 hours before checking it again. If there is a small leak, there may be considerable bilge water accumulation after 24 hours. If a leak is observed, repeat "Bedding" and "Installing" immediately (see pages 2 and 3).

Installation in a Cored Fiberglass Hull

The core (wood or foam) must be cut and sealed carefully. The core must be protected from water seepage, and the hull must be reinforced to preven it from crushing under the hull nut allowing the housing to become loose.

CAUTION: Completely seal the hull to prevent water seepage intc the core.

1. Drill a 3mm or 1/8" pilot hole from inside the hull. If there is a rib, strut, or other hull irregularity near the selected mounting location, drill from the outside. (If the hole is drilled in the wrong location, drill a second hole

